p-group, metabelian, nilpotent (class 2), monomial
Aliases: C25.44C22, C24.297C23, C23.380C24, C22.1832+ 1+4, (C2×C42)⋊5C22, C24⋊3C4.8C2, C22⋊C4.135D4, C23.181(C2×D4), C2.59(D4⋊5D4), (C22×C4).66C23, (C23×C4).94C22, C23.7Q8⋊51C2, C23.Q8⋊21C2, C23.8Q8⋊59C2, C22⋊2(C42⋊2C2), C23.144(C4○D4), C23.11D4⋊22C2, C22.260(C22×D4), C2.C42⋊55C22, C24.C22⋊59C2, C2.18(C22.32C24), C2.52(C22.19C24), C2.24(C22.45C24), (C4×C22⋊C4)⋊13C2, (C2×C4⋊C4)⋊19C22, (C2×C4).904(C2×D4), (C2×C42⋊2C2)⋊5C2, C2.10(C2×C42⋊2C2), C22.257(C2×C4○D4), (C22×C22⋊C4).23C2, (C2×C22⋊C4).148C22, SmallGroup(128,1212)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.380C24
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=g2=ba=ab, f2=a, ac=ca, ede-1=gdg-1=ad=da, ae=ea, af=fa, ag=ga, bc=cb, fdf-1=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >
Subgroups: 724 in 332 conjugacy classes, 104 normal (82 characteristic)
C1, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, C23, C23, C23, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C24, C24, C2.C42, C2×C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C42⋊2C2, C23×C4, C25, C4×C22⋊C4, C24⋊3C4, C23.7Q8, C23.8Q8, C24.C22, C23.Q8, C23.11D4, C22×C22⋊C4, C2×C42⋊2C2, C23.380C24
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C42⋊2C2, C22×D4, C2×C4○D4, 2+ 1+4, C22.19C24, C2×C42⋊2C2, C22.32C24, D4⋊5D4, C22.45C24, C23.380C24
(1 25)(2 26)(3 27)(4 28)(5 30)(6 31)(7 32)(8 29)(9 15)(10 16)(11 13)(12 14)(17 23)(18 24)(19 21)(20 22)
(1 27)(2 28)(3 25)(4 26)(5 32)(6 29)(7 30)(8 31)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)
(1 22)(2 23)(3 24)(4 21)(5 14)(6 15)(7 16)(8 13)(9 31)(10 32)(11 29)(12 30)(17 26)(18 27)(19 28)(20 25)
(1 22)(2 17)(3 24)(4 19)(5 10)(6 13)(7 12)(8 15)(9 29)(11 31)(14 32)(16 30)(18 27)(20 25)(21 28)(23 26)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 12 25 14)(2 31 26 6)(3 10 27 16)(4 29 28 8)(5 22 30 20)(7 24 32 18)(9 17 15 23)(11 19 13 21)
(1 2 3 4)(5 15 7 13)(6 16 8 14)(9 32 11 30)(10 29 12 31)(17 18 19 20)(21 22 23 24)(25 26 27 28)
G:=sub<Sym(32)| (1,25)(2,26)(3,27)(4,28)(5,30)(6,31)(7,32)(8,29)(9,15)(10,16)(11,13)(12,14)(17,23)(18,24)(19,21)(20,22), (1,27)(2,28)(3,25)(4,26)(5,32)(6,29)(7,30)(8,31)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24), (1,22)(2,23)(3,24)(4,21)(5,14)(6,15)(7,16)(8,13)(9,31)(10,32)(11,29)(12,30)(17,26)(18,27)(19,28)(20,25), (1,22)(2,17)(3,24)(4,19)(5,10)(6,13)(7,12)(8,15)(9,29)(11,31)(14,32)(16,30)(18,27)(20,25)(21,28)(23,26), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,12,25,14)(2,31,26,6)(3,10,27,16)(4,29,28,8)(5,22,30,20)(7,24,32,18)(9,17,15,23)(11,19,13,21), (1,2,3,4)(5,15,7,13)(6,16,8,14)(9,32,11,30)(10,29,12,31)(17,18,19,20)(21,22,23,24)(25,26,27,28)>;
G:=Group( (1,25)(2,26)(3,27)(4,28)(5,30)(6,31)(7,32)(8,29)(9,15)(10,16)(11,13)(12,14)(17,23)(18,24)(19,21)(20,22), (1,27)(2,28)(3,25)(4,26)(5,32)(6,29)(7,30)(8,31)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24), (1,22)(2,23)(3,24)(4,21)(5,14)(6,15)(7,16)(8,13)(9,31)(10,32)(11,29)(12,30)(17,26)(18,27)(19,28)(20,25), (1,22)(2,17)(3,24)(4,19)(5,10)(6,13)(7,12)(8,15)(9,29)(11,31)(14,32)(16,30)(18,27)(20,25)(21,28)(23,26), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,12,25,14)(2,31,26,6)(3,10,27,16)(4,29,28,8)(5,22,30,20)(7,24,32,18)(9,17,15,23)(11,19,13,21), (1,2,3,4)(5,15,7,13)(6,16,8,14)(9,32,11,30)(10,29,12,31)(17,18,19,20)(21,22,23,24)(25,26,27,28) );
G=PermutationGroup([[(1,25),(2,26),(3,27),(4,28),(5,30),(6,31),(7,32),(8,29),(9,15),(10,16),(11,13),(12,14),(17,23),(18,24),(19,21),(20,22)], [(1,27),(2,28),(3,25),(4,26),(5,32),(6,29),(7,30),(8,31),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24)], [(1,22),(2,23),(3,24),(4,21),(5,14),(6,15),(7,16),(8,13),(9,31),(10,32),(11,29),(12,30),(17,26),(18,27),(19,28),(20,25)], [(1,22),(2,17),(3,24),(4,19),(5,10),(6,13),(7,12),(8,15),(9,29),(11,31),(14,32),(16,30),(18,27),(20,25),(21,28),(23,26)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,12,25,14),(2,31,26,6),(3,10,27,16),(4,29,28,8),(5,22,30,20),(7,24,32,18),(9,17,15,23),(11,19,13,21)], [(1,2,3,4),(5,15,7,13),(6,16,8,14),(9,32,11,30),(10,29,12,31),(17,18,19,20),(21,22,23,24),(25,26,27,28)]])
38 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 2N | 2O | 4A | 4B | 4C | 4D | 4E | ··· | 4R | 4S | 4T | 4U | 4V |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | C4○D4 | 2+ 1+4 |
kernel | C23.380C24 | C4×C22⋊C4 | C24⋊3C4 | C23.7Q8 | C23.8Q8 | C24.C22 | C23.Q8 | C23.11D4 | C22×C22⋊C4 | C2×C42⋊2C2 | C22⋊C4 | C23 | C22 |
# reps | 1 | 1 | 2 | 1 | 2 | 3 | 1 | 3 | 1 | 1 | 4 | 16 | 2 |
Matrix representation of C23.380C24 ►in GL6(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
4 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 3 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 2 |
0 | 0 | 0 | 0 | 2 | 0 |
4 | 3 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,4,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4],[4,1,0,0,0,0,3,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[3,0,0,0,0,0,0,3,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,2,0],[4,1,0,0,0,0,3,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
C23.380C24 in GAP, Magma, Sage, TeX
C_2^3._{380}C_2^4
% in TeX
G:=Group("C2^3.380C2^4");
// GroupNames label
G:=SmallGroup(128,1212);
// by ID
G=gap.SmallGroup(128,1212);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,253,344,758,723,100,675,192]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=g^2=b*a=a*b,f^2=a,a*c=c*a,e*d*e^-1=g*d*g^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations